ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.23887
43
0

An End-to-End Comprehensive Gear Fault Diagnosis Method Based on Multi-Scale Feature-Level Fusion Strategy

31 March 2025
Bowei Qiao
Hongwei Wang
ArXivPDFHTML
Abstract

To satisfy the requirements of the end-to-end fault diagnosis of gears, an integrated intelligent method of fault diagnosis for gears using acceleration signals was proposed, which was based on Gabor-based Adaptive Short-Time Fourier Transform (Gabor-ASTFT) and Dual-Tree Complex Wavelet Transform(DTCWT) algorithms, Dilated Residual structure and feature fusion layer, is proposed in this paper. Initially, the raw one-dimensional acceleration signals collected from the gearbox base using vibration sensors undergo pre-segmentation processing. The Gabor-ASTFT and DTCWT are then applied to convert the original one-dimensional time-domain signals into two-dimensional time-frequency representations, facilitating the preliminary extraction of fault features and obtaining weak featurethis http URL, a dual-channel structure is established using deconvolution and dilated convolution to perform upsampling and downsampling on the feature maps, adjusting their sizes accordingly. A feature fusion layer is then constructed to integrate the dual-channel features, enabling multi-scale analysis of the extracted faultthis http URL, a convolutional neural network (CNN) model incorporating a residual structure is developed to conduct deep feature extraction from the fused feature maps. The extracted features are subsequently fed into a Global Average Pooling(GAP) and a classification function for fault classification. Conducting comparative experiments on different datasets, the proposed method is demonstrated to effectively meet the requirements of end-to-end fault diagnosis for gears.

View on arXiv
@article{qiao2025_2503.23887,
  title={ An End-to-End Comprehensive Gear Fault Diagnosis Method Based on Multi-Scale Feature-Level Fusion Strategy },
  author={ Bowei Qiao and Hongwei Wang },
  journal={arXiv preprint arXiv:2503.23887},
  year={ 2025 }
}
Comments on this paper