Hail nowcasting is a considerable contributor to meteorological disasters and there is a great need to mitigate its socioeconomic effects through precise forecast that has high resolution, long lead times and local details with large landscapes. Existing medium-range weather forecasting methods primarily rely on changes in upper air currents and cloud layers to predict precipitation events, such as heavy rainfall, which are unsuitable for hail nowcasting since it is mainly caused by low-altitude local strong convection associated with terrains. Additionally, radar captures the status of low cloud layers, such as water vapor, droplets, and ice crystals, providing rich signals suitable for hail nowcasting. To this end, we introduce a Spatial-Temporal gEnerAtive Model called SteamCast for hail nowcasting with radar echo extrapolation, it is a deep probabilistic diffusion model based on spatial-temporal representations including radar echoes as well as their position/time embeddings, which we trained on historical reanalysis archive from Yanán Meteorological Bureau in China, where the crop yield like apple suffers greatly from hail damage. Considering the short-term nature of hail, SteamCast provides 30-minute nowcasts at 6-minute intervals for a single radar reflectivity variable, across 9 different vertical angles, on a latitude-longitude grid with approximately 1 km * 1 km resolution per pixel in Yanán City, China. By successfully fusing the spatial-temporal features of radar echoes, SteamCast delivers competitive, and in some cases superior, results compared to other deep learning-based models such as PredRNN and VMRNN.
View on arXiv@article{shi2025_2503.22724, title={ A Spatial-temporal Deep Probabilistic Diffusion Model for Reliable Hail Nowcasting with Radar Echo Extrapolation }, author={ Haonan Shi and Long Tian and Jie Tao and Yufei Li and Liming Wang and Xiyang Liu }, journal={arXiv preprint arXiv:2503.22724}, year={ 2025 } }