50
0

Byzantine Resilient Federated Multi-Task Representation Learning

Abstract

In this paper, we propose BR-MTRL, a Byzantine-resilient multi-task representation learning framework that handles faulty or malicious agents. Our approach leverages representation learning through a shared neural network model, where all clients share fixed layers, except for a client-specific final layer. This structure captures shared features among clients while enabling individual adaptation, making it a promising approach for leveraging client data and computational power in heterogeneous federated settings to learn personalized models. To learn the model, we employ an alternating gradient descent strategy: each client optimizes its local model, updates its final layer, and sends estimates of the shared representation to a central server for aggregation. To defend against Byzantine agents, we employ two robust aggregation methods for client-server communication, Geometric Median and Krum. Our method enables personalized learning while maintaining resilience in distributed settings. We implemented the proposed algorithm in a federated testbed built using Amazon Web Services (AWS) platform and compared its performance with various benchmark algorithms and their variations. Through experiments using real-world datasets, including CIFAR-10 and FEMNIST, we demonstrated the effectiveness and robustness of our approach and its transferability to new unseen clients with limited data, even in the presence of Byzantine adversaries.

View on arXiv
@article{le2025_2503.19209,
  title={ Byzantine Resilient Federated Multi-Task Representation Learning },
  author={ Tuan Le and Shana Moothedath },
  journal={arXiv preprint arXiv:2503.19209},
  year={ 2025 }
}
Comments on this paper