73
1

Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture

Abstract

Over-the-air computation (AirComp) has emerged as an essential approach for enabling communication-efficient federated learning (FL) over wireless networks. Nonetheless, the inherent analog transmission mechanism in AirComp-based FL (AirFL) intensifies challenges posed by potential Byzantine attacks. In this paper, we propose a novel Byzantine-robust FL paradigm for over-the-air transmissions, referred to as federated learning with secure adaptive clustering (FedSAC). FedSAC aims to protect a portion of the devices from attacks through zero trust architecture (ZTA) based Byzantine identification and adaptive device clustering. By conducting a one-step convergence analysis, we theoretically characterize the convergence behavior with different device clustering mechanisms and uneven aggregation weighting factors for each device. Building upon our analytical results, we formulate a joint optimization problem for the clustering and weighting factors in each communication round. To facilitate the targeted optimization, we propose a dynamic Byzantine identification method using historical reputation based on ZTA. Furthermore, we introduce a sequential clustering method, transforming the joint optimization into a weighting optimization problem without sacrificing the optimality. To optimize the weighting, we capitalize on the penalty convex-concave procedure (P-CCP) to obtain a stationary solution. Numerical results substantiate the superiority of the proposed FedSAC over existing methods in terms of both test accuracy and convergence rate.

View on arXiv
@article{yao2025_2503.18284,
  title={ Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture },
  author={ Jiacheng Yao and Wei Shi and Wei Xu and Zhaohui Yang and A. Lee Swindlehurst and Dusit Niyato },
  journal={arXiv preprint arXiv:2503.18284},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.