Lending within decentralized finance (DeFi) has facilitated over 100billionofloanssince2020.Along−standinginefficiencyinDeFilendingprotocolssuchasAaveistheuseofstaticpricingmechanismsforloans.ThesemechanismshavebeenshowntomaximizeneitherwelfarenorrevenueforparticipantsinDeFilendingprotocols.Recently,adaptivesupplymodelspioneeredbyMorphoandEulerhavebecomeapopularmeansofdynamicpricingforloans.Thispricingisfacilitatedbyagentsknownascurators,whobidtomatchsupplyanddemand.WeconstructandanalyzeanonlinelearningmodelforstaticanddynamicpricingmodelswithinDeFilending.WeshowthatwhenloansaresmallandhaveashortdurationrelativetoanobservationtimeT,adaptivesupplymodelsachieveO(\log T)regret,whilestaticmodelscannotachievebetterthan\Omega(\sqrt{T})regret.Wethenstudycompetitivebehaviorbetweencurators,demonstratingthatadaptivesupplymechanismsmaximizerevenueandwelfareforbothborrowersandlenders.