81
4

Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning

Abstract

Recently, Meta-Black-Box-Optimization (MetaBBO) methods significantly enhance the performance of traditional black-box optimizers through meta-learning flexible and generalizable meta-level policies that excel in dynamic algorithm configuration (DAC) tasks within the low-level optimization, reducing the expertise required to adapt optimizers for novel optimization tasks. Though promising, existing MetaBBO methods heavily rely on human-crafted feature extraction approach to secure learning effectiveness. To address this issue, this paper introduces a novel MetaBBO method that supports automated feature learning during the meta-learning process, termed as RLDE-AFL, which integrates a learnable feature extraction module into a reinforcement learning-based DE method to learn both the feature encoding and meta-level policy. Specifically, we design an attention-based neural network with mantissa-exponent based embedding to transform the solution populations and corresponding objective values during the low-level optimization into expressive landscape features. We further incorporate a comprehensive algorithm configuration space including diverse DE operators into a reinforcement learning-aided DAC paradigm to unleash the behavior diversity and performance of the proposed RLDE-AFL. Extensive benchmark results show that co-training the proposed feature learning module and DAC policy contributes to the superior optimization performance of RLDE-AFL to several advanced DE methods and recent MetaBBO baselines over both synthetic and realistic BBO scenarios. The source codes of RLDE-AFL are available atthis https URL.

View on arXiv
@article{guo2025_2503.18061,
  title={ Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning },
  author={ Hongshu Guo and Sijie Ma and Zechuan Huang and Yuzhi Hu and Zeyuan Ma and Xinglin Zhang and Yue-Jiao Gong },
  journal={arXiv preprint arXiv:2503.18061},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.