Human activity recognition (HAR) with deep learning models relies on large amounts of labeled data, often challenging to obtain due to associated cost, time, and labor. Self-supervised learning (SSL) has emerged as an effective approach to leverage unlabeled data through pretext tasks, such as masked reconstruction and multitask learning with signal processing-based data augmentations, to pre-train encoder models. However, such methods are often derived from computer vision approaches that disregard physical mechanisms and constraints that govern wearable sensor data and the phenomena they reflect. In this paper, we propose a physics-informed multi-task pre-training (PIM) framework for IMU-based HAR. PIM generates pre-text tasks based on the understanding of basic physical aspects of human motion: including movement speed, angles of movement, and symmetry between sensor placements. Given a sensor signal, we calculate corresponding features using physics-based equations and use them as pretext tasks for SSL. This enables the model to capture fundamental physical characteristics of human activities, which is especially relevant for multi-sensor systems. Experimental evaluations on four HAR benchmark datasets demonstrate that the proposed method outperforms existing state-of-the-art methods, including data augmentation and masked reconstruction, in terms of accuracy and F1 score. We have observed gains of almost 10\% in macro f1 score and accuracy with only 2 to 8 labeled examples per class and up to 3% when there is no reduction in the amount of training data.
View on arXiv@article{nshimyimana2025_2503.17978, title={ PIM: Physics-Informed Multi-task Pre-training for Improving Inertial Sensor-Based Human Activity Recognition }, author={ Dominique Nshimyimana and Vitor Fortes Rey and Sungho Suh and Bo Zhou and Paul Lukowicz }, journal={arXiv preprint arXiv:2503.17978}, year={ 2025 } }