ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.15182
78
1

Foundation models may exhibit staged progression in novel CBRN threat disclosure

19 March 2025
Kevin M Esvelt
ArXiv (abs)PDFHTML
Main:26 Pages
2 Figures
Abstract

The extent to which foundation models can disclose novel chemical, biological, radiation, and nuclear (CBRN) threats to expert users is unclear due to a lack of test cases. I leveraged the unique opportunity presented by an upcoming publication describing a novel catastrophic biothreat - "Technical Report on Mirror Bacteria: Feasibility and Risks" - to conduct a small controlled study before it became public. Graduate-trained biologists tasked with predicting the consequences of releasing mirror E. coli showed no significant differences in rubric-graded accuracy using Claude Sonnet 3.5 new (n=10) or web search only (n=2); both groups scored comparably to a web baseline (28 and 43 versus 36). However, Sonnet reasoned correctly when prompted by a report author, but a smaller model, Haiku 3.5, failed even with author guidance (80 versus 5). These results suggest distinct stages of model capability: Haiku is unable to reason about mirror life even with threat-aware expert guidance (Stage 1), while Sonnet correctly reasons only with threat-aware prompting (Stage 2). Continued advances may allow future models to disclose novel CBRN threats to naive experts (Stage 3) or unskilled users (Stage 4). While mirror life represents only one case study, monitoring new models' ability to reason about privately known threats may allow protective measures to be implemented before widespread disclosure.

View on arXiv
@article{esvelt2025_2503.15182,
  title={ Foundation models may exhibit staged progression in novel CBRN threat disclosure },
  author={ Kevin M Esvelt },
  journal={arXiv preprint arXiv:2503.15182},
  year={ 2025 }
}
Comments on this paper