80
0

Forecasting Empty Container availability for Vehicle Booking System Application

Abstract

Container terminals, pivotal nodes in the network of empty container movement, hold significant potential for enhancing operational efficiency within terminal depots through effective collaboration between transporters and terminal operators. This collaboration is crucial for achieving optimization, leading to streamlined operations and reduced congestion, thereby benefiting both parties. Consequently, there is a pressing need to develop the most suitable forecasting approaches to address this challenge. This study focuses on developing and evaluating a data-driven approach for forecasting empty container availability at container terminal depots within a Vehicle Booking System (VBS) framework. It addresses the gap in research concerning optimizing empty container dwell time and aims to enhance operational efficiencies in container terminal operations. Four forecasting models-Naive, ARIMA, Prophet, and LSTM-are comprehensively analyzed for their predictive capabilities, with LSTM emerging as the top performer due to its ability to capture complex time series patterns. The research underscores the significance of selecting appropriate forecasting techniques tailored to the specific requirements of container terminal operations, contributing to improved operational planning and management in maritime logistics.

View on arXiv
@article{gouabou2025_2503.11728,
  title={ Forecasting Empty Container availability for Vehicle Booking System Application },
  author={ Arthur Cartel Foahom Gouabou and Mohammed Al-Kharaz and Faouzi Hakimi and Tarek Khaled and Kenza Amzil },
  journal={arXiv preprint arXiv:2503.11728},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.