178
0
v1v2 (latest)

TikZero: Zero-Shot Text-Guided Graphics Program Synthesis

Abstract

With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.

View on arXiv
@article{belouadi2025_2503.11509,
  title={ TikZero: Zero-Shot Text-Guided Graphics Program Synthesis },
  author={ Jonas Belouadi and Eddy Ilg and Margret Keuper and Hideki Tanaka and Masao Utiyama and Raj Dabre and Steffen Eger and Simone Paolo Ponzetto },
  journal={arXiv preprint arXiv:2503.11509},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.