ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.10990
84
7

Statistical Impossibility and Possibility of Aligning LLMs with Human Preferences: From Condorcet Paradox to Nash Equilibrium

14 March 2025
Kaizhao Liu
Qi Long
Zhekun Shi
Weijie J. Su
Jiancong Xiao
ArXiv (abs)PDFHTML
Abstract

Aligning large language models (LLMs) with diverse human preferences is critical for ensuring fairness and informed outcomes when deploying these models for decision-making. In this paper, we seek to uncover fundamental statistical limits concerning aligning LLMs with human preferences, with a focus on the probabilistic representation of human preferences and the preservation of diverse preferences in aligned LLMs. We first show that human preferences can be represented by a reward model if and only if the preference among LLM-generated responses is free of any Condorcet cycle. Moreover, we prove that Condorcet cycles exist with probability converging to one exponentially fast under a probabilistic preference model, thereby demonstrating the impossibility of fully aligning human preferences using reward-based approaches such as reinforcement learning from human feedback. Next, we explore the conditions under which LLMs would employ mixed strategies -- meaning they do not collapse to a single response -- when aligned in the limit using a non-reward-based approach, such as Nash learning from human feedback (NLHF). We identify a necessary and sufficient condition for mixed strategies: the absence of a response that is preferred over all others by a majority. As a blessing, we prove that this condition holds with high probability under the probabilistic preference model, thereby highlighting the statistical possibility of preserving minority preferences without explicit regularization in aligning LLMs. Finally, we leverage insights from our statistical results to design a novel, computationally efficient algorithm for finding Nash equilibria in aligning LLMs with NLHF. Our experiments show that Llama-3.2-1B, aligned with our algorithm, achieves a win rate of 60.55\% against the base model.

View on arXiv
@article{liu2025_2503.10990,
  title={ Statistical Impossibility and Possibility of Aligning LLMs with Human Preferences: From Condorcet Paradox to Nash Equilibrium },
  author={ Kaizhao Liu and Qi Long and Zhekun Shi and Weijie J. Su and Jiancong Xiao },
  journal={arXiv preprint arXiv:2503.10990},
  year={ 2025 }
}
Comments on this paper