Data-Driven Soft Robot Control via Adiabatic Spectral Submanifolds
The mechanical complexity of soft robots creates significant challenges for their model-based control. Specifically, linear data-driven models have struggled to control soft robots on complex, spatially extended paths that explore regions with significant nonlinear behavior. To account for these nonlinearities, we develop here a model-predictive control strategy based on the recent theory of adiabatic spectral submanifolds (aSSMs). This theory is applicable because the internal vibrations of heavily overdamped robots decay at a speed that is much faster than the desired speed of the robot along its intended path. In that case, low-dimensional attracting invariant manifolds (aSSMs) emanate from the path and carry the dominant dynamics of the robot. Aided by this recent theory, we devise an aSSM-based model-predictive control scheme purely from data. We demonstrate the effectiveness of this data-driven model on various dynamic trajectory tracking tasks on a high-fidelity and high-dimensional finite-element model of a soft trunk robot. Notably, we find that four- or five-dimensional aSSM-reduced models outperform the tracking performance of other data-driven modeling methods by a factor up to 10 across all closed-loop control tasks.
View on arXiv@article{kaundinya2025_2503.10919, title={ Data-Driven Soft Robot Control via Adiabatic Spectral Submanifolds }, author={ Roshan S. Kaundinya and John Irvin Alora and Jonas G. Matt and Luis A. Pabon and Marco Pavone and George Haller }, journal={arXiv preprint arXiv:2503.10919}, year={ 2025 } }