ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.10869
48
0

Evaluating a Novel Neuroevolution and Neural Architecture Search System

13 March 2025
Benjamin David Winter
William John Teahan
ArXiv (abs)PDFHTML
Abstract

The choice of neural network features can have a large impact on both the accuracy and speed of the network. Despite the current industry shift towards large transformer models, specialized binary classifiers remain critical for numerous practical applications where computational efficiency and low latency are essential. Neural network features tend to be developed homogeneously, resulting in slower or less accurate networks when testing against multiple datasets. In this paper, we show the effectiveness of Neuvo NAS+ a novel Python implementation of an extended Neural Architecture Search (NAS+) which allows the user to optimise the training parameters of a network as well as the network's architecture. We provide an in-depth analysis of the importance of catering a network's architecture to each dataset. We also describe the design of the Neuvo NAS+ system that selects network features on a task-specific basis including network training hyper-parameters such as the number of epochs and batch size. Results show that the Neuvo NAS+ task-specific approach significantly outperforms several machine learning approaches such as Naive Bayes, C4.5, Support Vector Machine and a standard Artificial Neural Network for solving a range of binary classification problems in terms of accuracy. Our experiments demonstrate substantial diversity in evolved network architectures across different datasets, confirming the value of task-specific optimization. Additionally, Neuvo NAS+ outperforms other evolutionary algorithm optimisers in terms of both accuracy and computational efficiency, showing that properly optimized binary classifiers can match or exceed the performance of more complex models while requiring significantly fewer computational resources.

View on arXiv
@article{winter2025_2503.10869,
  title={ Evaluating a Novel Neuroevolution and Neural Architecture Search System },
  author={ Benjamin David Winter and William John Teahan },
  journal={arXiv preprint arXiv:2503.10869},
  year={ 2025 }
}
Main:9 Pages
3 Figures
Bibliography:1 Pages
Comments on this paper