ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.09132
88
0

Investigation of Frame Differences as Motion Cues for Video Object Segmentation

12 March 2025
Sota Kawamura
Hirotada Honda
Shugo Nakamura
Takashi Sano
    VOS
ArXivPDFHTML
Abstract

Automatic Video Object Segmentation (AVOS) refers to the task of autonomously segmenting target objects in video sequences without relying on human-provided annotations in the first frames. In AVOS, the use of motion information is crucial, with optical flow being a commonly employed method for capturing motion cues. However, the computation of optical flow is resource-intensive, making it unsuitable for real-time applications, especially on edge devices with limited computational resources. In this study, we propose using frame differences as an alternative to optical flow for motion cue extraction. We developed an extended U-Net-like AVOS model that takes a frame on which segmentation is performed and a frame difference as inputs, and outputs an estimated segmentation map. Our experimental results demonstrate that the proposed model achieves performance comparable to the model with optical flow as an input, particularly when applied to videos captured by stationary cameras. Our results suggest the usefulness of employing frame differences as motion cues in cases with limited computational resources.

View on arXiv
@article{kawamura2025_2503.09132,
  title={ Investigation of Frame Differences as Motion Cues for Video Object Segmentation },
  author={ Sota Kawamura and Hirotada Honda and Shugo Nakamura and Takashi Sano },
  journal={arXiv preprint arXiv:2503.09132},
  year={ 2025 }
}
Comments on this paper