ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.06515
51
0

SAQ-SAM: Semantically-Aligned Quantization for Segment Anything Model

9 March 2025
Jing Zhang
Z. Li
Qingyi Gu
    MQ
    VLM
ArXivPDFHTML
Abstract

Segment Anything Model (SAM) exhibits remarkable zero-shot segmentation capability; however, its prohibitive computational costs make edge deployment challenging. Although post-training quantization (PTQ) offers a promising compression solution, existing methods yield unsatisfactory results when applied to SAM, owing to its specialized model components and promptable workflow: (i) The mask decoder's attention exhibits extreme outliers, and we find that aggressive clipping (ranging down to even 100×\times×), instead of smoothing or isolation, is effective in suppressing outliers while maintaining semantic capabilities. Unfortunately, traditional metrics (e.g., MSE) fail to provide such large-scale clipping. (ii) Existing reconstruction methods potentially neglect prompts' intention, resulting in distorted visual encodings during prompt interactions. To address the above issues, we propose SAQ-SAM in this paper, which boosts PTQ of SAM with semantic alignment. Specifically, we propose Perceptual-Consistency Clipping, which exploits attention focus overlap as clipping metric, to significantly suppress outliers. Furthermore, we propose Prompt-Aware Reconstruction, which incorporates visual-prompt interactions by leveraging cross-attention responses in mask decoder, thus facilitating alignment in both distribution and semantics. To ensure the interaction efficiency, we also introduce a layer-skipping strategy for visual tokens. Extensive experiments are conducted on different segmentation tasks and SAMs of various sizes, and the results show that the proposed SAQ-SAM consistently outperforms baselines. For example, when quantizing SAM-B to 4-bit, our method achieves 11.7% higher mAP than the baseline in instance segmentation task.

View on arXiv
@article{zhang2025_2503.06515,
  title={ SAQ-SAM: Semantically-Aligned Quantization for Segment Anything Model },
  author={ Jing Zhang and Zhikai Li and Qingyi Gu },
  journal={arXiv preprint arXiv:2503.06515},
  year={ 2025 }
}
Comments on this paper