Automating bone micro-milling using a robotic system presents challenges due to the uncertainties in both the external and internal features of bone tissue. For example, during mouse cranial window creation, a circular path with a radius of 2 to 4 mm needs to be milled on the mouse skull using a microdrill. The uneven surface and non-uniform thickness of the mouse skull make it difficult to fully automate this process, requiring the system to possess advanced perceptual and adaptive capabilities. In this study, we address this challenge by integrating a Microscopic Stereo Camera System (MSCS) into the robotic bone micro-milling system and proposing a novel pre-measurement pipeline for the target surface. Starting from uncalibrated cameras, the pipeline enables automatic calibration and 3D surface fitting through a convolutional neural network (CNN)-based keypoint detection. Combined with the existing feedback-based system, we develop the world's first autonomous robotic bone micro-milling system capable of rapidly, in real-time, and accurately perceiving and adapting to surface unevenness and non-uniform thickness, thereby enabling an end-to-end autonomous cranial window creation workflow without human assistance. Validation experiments on euthanized mice demonstrate that the improved system achieves a success rate of 85.7% and an average milling time of 2.1 minutes, showing not only significant performance improvements over the previous system but also exceptional accuracy, speed, and stability compared to human operators.
View on arXiv@article{zhao2025_2503.04038, title={ Autonomous Robotic Bone Micro-Milling System with Automatic Calibration and 3D Surface Fitting }, author={ Enduo Zhao and Xiaofeng Lin and Yifan Wang and Kanako Harada }, journal={arXiv preprint arXiv:2503.04038}, year={ 2025 } }