80
0

Network Traffic Classification Using Machine Learning, Transformer, and Large Language Models

Abstract

This study uses various models to address network traffic classification, categorizing traffic into web, browsing, IPSec, backup, and email. We collected a comprehensive dataset from Arbor Edge Defender (AED) devices, comprising of 30,959 observations and 19 features. Multiple models were evaluated, including Naive Bayes, Decision Tree, Random Forest, Gradient Boosting, XGBoost, Deep Neural Networks (DNN), Transformer, and two Large Language Models (LLMs) including GPT-4o and Gemini with zero- and few-shot learning. Transformer and XGBoost showed the best performance, achieving the highest accuracy of 98.95 and 97.56%, respectively. GPT-4o and Gemini showed promising results with few-shot learning, improving accuracy significantly from initial zero-shot performance. While Gemini Few-Shot and GPT-4o Few-Shot performed well in categories like Web and Email, misclassifications occurred in more complex categories like IPSec and Backup. The study highlights the importance of model selection, fine-tuning, and the balance between training data size and model complexity for achieving reliable classification results.

View on arXiv
@article{antari2025_2503.02141,
  title={ Network Traffic Classification Using Machine Learning, Transformer, and Large Language Models },
  author={ Ahmad Antari and Yazan Abo-Aisheh and Jehad Shamasneh and Huthaifa I. Ashqar },
  journal={arXiv preprint arXiv:2503.02141},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.