179
1

CNN-based Robust Sound Source Localization with SRP-PHAT for the Extreme Edge

Abstract

Robust sound source localization for environments with noise and reverberation are increasingly exploiting deep neural networks fed with various acoustic features. Yet, state-of-the-art research mainly focuses on optimizing algorithmic accuracy, resulting in huge models preventing edge-device deployment. The edge, however, urges for real-time low-footprint acoustic reasoning for applications such as hearing aids and robot interactions. Hence, we set off from a robust CNN-based model using SRP-PHAT features, Cross3D [16], to pursue an efficient yet compact model architecture for the extreme edge. For both the SRP feature representation and neural network, we propose respectively our scalable LC-SRP-Edge and Cross3D-Edge algorithms which are optimized towards lower hardware overhead. LC-SRP-Edge halves the complexity and on-chip memory overhead for the sinc interpolation compared to the original LC-SRP [19]. Over multiple SRP resolution cases, Cross3D-Edge saves 10.32~73.71% computational complexity and 59.77~94.66% neural network weights against the Cross3D baseline. In terms of the accuracy-efficiency tradeoff, the most balanced version (EM) requires only 127.1 MFLOPS computation, 3.71 MByte/s bandwidth, and 0.821 MByte on-chip memory in total, while still retaining competitiveness in state-of-the-art accuracy comparisons. It achieves 8.59 ms/frame end-to-end latency on a Rasberry Pi 4B, which is 7.26x faster than the corresponding baseline.

View on arXiv
@article{yin2025_2503.02046,
  title={ CNN-based Robust Sound Source Localization with SRP-PHAT for the Extreme Edge },
  author={ Jun Yin and Marian Verhelst },
  journal={arXiv preprint arXiv:2503.02046},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.