31
0

Policy Design in Long-Run Welfare Dynamics

Abstract

Improving social welfare is a complex challenge requiring policymakers to optimize objectives across multiple time horizons. Evaluating the impact of such policies presents a fundamental challenge, as those that appear suboptimal in the short run may yield significant long-term benefits. We tackle this challenge by analyzing the long-term dynamics of two prominent policy frameworks: Rawlsian policies, which prioritize those with the greatest need, and utilitarian policies, which maximize immediate welfare gains. Conventional wisdom suggests these policies are at odds, as Rawlsian policies are assumed to come at the cost of reducing the average social welfare, which their utilitarian counterparts directly optimize. We challenge this assumption by analyzing these policies in a sequential decision-making framework where individuals' welfare levels stochastically decay over time, and policymakers can intervene to prevent this decay. Under reasonable assumptions, we prove that interventions following Rawlsian policies can outperform utilitarian policies in the long run, even when the latter dominate in the short run. We characterize the exact conditions under which Rawlsian policies can outperform utilitarian policies. We further illustrate our theoretical findings using simulations, which highlight the risks of evaluating policies based solely on their short-term effects. Our results underscore the necessity of considering long-term horizons in designing and evaluating welfare policies; the true efficacy of even well-established policies may only emerge over time.

View on arXiv
@article{wu2025_2503.00632,
  title={ Policy Design in Long-Run Welfare Dynamics },
  author={ Jiduan Wu and Rediet Abebe and Moritz Hardt and Ana-Andreea Stoica },
  journal={arXiv preprint arXiv:2503.00632},
  year={ 2025 }
}
Comments on this paper