ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.18986
193
0

Evaluating Membership Inference Attacks in heterogeneous-data setups

26 February 2025
Bram van Dartel
Marc Damie
Florian Hahn
    MIACV
    MIALM
ArXivPDFHTML
Abstract

Among all privacy attacks against Machine Learning (ML), membership inference attacks (MIA) attracted the most attention. In these attacks, the attacker is given an ML model and a data point, and they must infer whether the data point was used for training. The attacker also has an auxiliary dataset to tune their inference algorithm.Attack papers commonly simulate setups in which the attacker's and the target's datasets are sampled from the same distribution. This setting is convenient to perform experiments, but it rarely holds in practice. ML literature commonly starts with similar simplifying assumptions (i.e., "i.i.d." datasets), and later generalizes the results to support heterogeneous data distributions. Similarly, our work makes a first step in the generalization of the MIA evaluation to heterogeneous data.First, we design a metric to measure the heterogeneity between any pair of tabular data distributions. This metric provides a continuous scale to analyze the phenomenon. Second, we compare two methodologies to simulate a data heterogeneity between the target and the attacker. These setups provide opposite performances: 90% attack accuracy vs. 50% (i.e., random guessing). Our results show that the MIA accuracy depends on the experimental setup; and even if research on MIA considers heterogeneous data setups, we have no standardized baseline of how to simulate it. The lack of such a baseline for MIA experiments poses a significant challenge to risk assessments in real-world machine learning scenarios.

View on arXiv
@article{dartel2025_2502.18986,
  title={ Evaluating Membership Inference Attacks in heterogeneous-data setups },
  author={ Bram van Dartel and Marc Damie and Florian Hahn },
  journal={arXiv preprint arXiv:2502.18986},
  year={ 2025 }
}
Comments on this paper