ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.16462
41
0

Improved Margin Generalization Bounds for Voting Classifiers

23 February 2025
Mikael Møller Høgsgaard
Kasper Green Larsen
    AI4CE
ArXivPDFHTML
Abstract

In this paper we establish a new margin-based generalization bound for voting classifiers, refining existing results and yielding tighter generalization guarantees for widely used boosting algorithms such as AdaBoost (Freund and Schapire, 1997). Furthermore, the new margin-based generalization bound enables the derivation of an optimal weak-to-strong learner: a Majority-of-3 large-margin classifiers with an expected error matching the theoretical lower bound. This result provides a more natural alternative to the Majority-of-5 algorithm by (Høgsgaard et al. 2024) , and matches the Majority-of-3 result by (Aden-Ali et al. 2024) for the realizable prediction model.

View on arXiv
@article{høgsgaard2025_2502.16462,
  title={ Improved Margin Generalization Bounds for Voting Classifiers },
  author={ Mikael Møller Høgsgaard and Kasper Green Larsen },
  journal={arXiv preprint arXiv:2502.16462},
  year={ 2025 }
}
Comments on this paper