ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.16391
83
1

Subspace Recovery in Winsorized PCA: Insights into Accuracy and Robustness

23 February 2025
Sangil Han
Kyoowon Kim
Sungkyu Jung
ArXiv (abs)PDFHTML
Abstract

In this paper, we explore the theoretical properties of subspace recovery using Winsorized Principal Component Analysis (WPCA), utilizing a common data transformation technique that caps extreme values to mitigate the impact of outliers. Despite the widespread use of winsorization in various tasks of multivariate analysis, its theoretical properties, particularly for subspace recovery, have received limited attention. We provide a detailed analysis of the accuracy of WPCA, showing that increasing the number of samples while decreasing the proportion of outliers guarantees the consistency of the sample subspaces from WPCA with respect to the true population subspace. Furthermore, we establish perturbation bounds that ensure the WPCA subspace obtained from contaminated data remains close to the subspace recovered from pure data. Additionally, we extend the classical notion of breakdown points to subspace-valued statistics and derive lower bounds for the breakdown points of WPCA. Our analysis demonstrates that WPCA exhibits strong robustness to outliers while maintaining consistency under mild assumptions. A toy example is provided to numerically illustrate the behavior of the upper bounds for perturbation bounds and breakdown points, emphasizing winsorization's utility in subspace recovery.

View on arXiv
Main:17 Pages
4 Figures
Bibliography:6 Pages
Appendix:18 Pages
Comments on this paper