ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.14209
64
1

Spatial and Frequency Domain Adaptive Fusion Network for Image Deblurring

21 February 2025
Hu Gao
Depeng Dang
ArXiv (abs)PDFHTML
Abstract

Image deblurring aims to reconstruct a latent sharp image from its corresponding blurred one. Although existing methods have achieved good performance, most of them operate exclusively in either the spatial domain or the frequency domain, rarely exploring solutions that fuse both domains. In this paper, we propose a spatial-frequency domain adaptive fusion network (SFAFNet) to address this limitation. Specifically, we design a gated spatial-frequency domain feature fusion block (GSFFBlock), which consists of three key components: a spatial domain information module, a frequency domain information dynamic generation module (FDGM), and a gated fusion module (GFM). The spatial domain information module employs the NAFBlock to integrate local information. Meanwhile, in the FDGM, we design a learnable low-pass filter that dynamically decomposes features into separate frequency subbands, capturing the image-wide receptive field and enabling the adaptive exploration of global contextual information. Additionally, to facilitate information flow and the learning of complementary representations. In the GFM, we present a gating mechanism (GATE) to re-weight spatial and frequency domain features, which are then fused through the cross-attention mechanism (CAM). Experimental results demonstrate that our SFAFNet performs favorably compared to state-of-the-art approaches on commonly used benchmarks.

View on arXiv
@article{gao2025_2502.14209,
  title={ Spatial and Frequency Domain Adaptive Fusion Network for Image Deblurring },
  author={ Hu Gao and Depeng Dang },
  journal={arXiv preprint arXiv:2502.14209},
  year={ 2025 }
}
Comments on this paper