109
0

Benchmarking Self-Supervised Learning Methods for Accelerated MRI Reconstruction

Abstract

Reconstructing MRI from highly undersampled measurements is crucial for accelerating medical imaging, but is challenging due to the ill-posedness of the inverse problem. While supervised deep learning (DL) approaches have shown remarkable success, they traditionally rely on fully-sampled ground truth (GT) images, which are expensive or impossible to obtain in real scenarios. This problem has created a recent surge in interest in self-supervised learning methods that do not require GT. Although recent methods are now fast approaching "oracle" supervised performance, the lack of systematic comparison and standard experimental setups are hindering targeted methodological research and precluding widespread trustworthy industry adoption. We present SSIBench, a modular and flexible comparison framework to unify and thoroughly benchmark Self-Supervised Imaging methods (SSI) without GT. We evaluate 18 methods across 4 realistic MRI scenarios on real data, showing a wide performance landscape whose method ranking differs across scenarios and metrics, exposing the need for further SSI research. Our insights also show how complementary methods could be compounded for future improvements, exemplified by a novel loss we propose, Multi-Operator Equivariant Imaging. To accelerate reproducible research and lower the barrier to entry, we provide the extensible benchmark and open-source reimplementations of all methods atthis https URL, allowing researchers to rapidly and fairly contribute and evaluate new methods on the standardised setup for potential leaderboard ranking, or benchmark existing methods on custom datasets, forward operators, or models, unlocking the application of SSI to other valuable GT free domains such as 4D MRI and other nascent scientific imaging modalities.

View on arXiv
@article{wang2025_2502.14009,
  title={ Benchmarking Self-Supervised Learning Methods for Accelerated MRI Reconstruction },
  author={ Andrew Wang and Steven McDonagh and Mike Davies },
  journal={arXiv preprint arXiv:2502.14009},
  year={ 2025 }
}
Comments on this paper