ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.13165
187
3

HedgeAgents: A Balanced-aware Multi-agent Financial Trading System

17 February 2025
Xiangyu Li
Yawen Zeng
Xiaofen Xing
Jin Xu
Xiangmin Xu
    AIFin
ArXiv (abs)PDFHTML
Abstract

As automated trading gains traction in the financial market, algorithmic investment strategies are increasingly prominent. While Large Language Models (LLMs) and Agent-based models exhibit promising potential in real-time market analysis and trading decisions, they still experience a significant -20% loss when confronted with rapid declines or frequent fluctuations, impeding their practical application. Hence, there is an imperative to explore a more robust and resilient framework. This paper introduces an innovative multi-agent system, HedgeAgents, aimed at bolstering system robustness via ``hedging'' strategies. In this well-balanced system, an array of hedging agents has been tailored, where HedgeAgents consist of a central fund manager and multiple hedging experts specializing in various financial asset classes. These agents leverage LLMs' cognitive capabilities to make decisions and coordinate through three types of conferences. Benefiting from the powerful understanding of LLMs, our HedgeAgents attained a 70% annualized return and a 400% total return over a period of 3 years. Moreover, we have observed with delight that HedgeAgents can even formulate investment experience comparable to those of human experts (this https URL).

View on arXiv
@article{li2025_2502.13165,
  title={ HedgeAgents: A Balanced-aware Multi-agent Financial Trading System },
  author={ Xiangyu Li and Yawen Zeng and Xiaofen Xing and Jin Xu and Xiangmin Xu },
  journal={arXiv preprint arXiv:2502.13165},
  year={ 2025 }
}
Comments on this paper