ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.12278
37
0
v1v2 (latest)

Towards Practical First-Order Model Counting

17 February 2025
Ananth K. Kidambi
Guramrit Singh
Paulius Dilkas
Kuldeep S. Meel
    LRM
ArXiv (abs)PDFHTML
Main:14 Pages
4 Figures
Bibliography:2 Pages
1 Tables
Appendix:2 Pages
Abstract

First-order model counting (FOMC) is the problem of counting the number of models of a sentence in first-order logic. Since lifted inference techniques rely on reductions to variants of FOMC, the design of scalable methods for FOMC has attracted attention from both theoreticians and practitioners over the past decade. Recently, a new approach based on first-order knowledge compilation was proposed. This approach, called Crane, instead of simply providing the final count, generates definitions of (possibly recursive) functions that can be evaluated with different arguments to compute the model count for any domain size. However, this approach is not fully automated, as it requires manual evaluation of the constructed functions. The primary contribution of this work is a fully automated compilation algorithm, called Crane2, which transforms the function definitions into C++ code equipped with arbitrary-precision arithmetic. These additions allow the new FOMC algorithm to scale to domain sizes over 500,000 times larger than the current state of the art, as demonstrated through experimental results.

View on arXiv
Comments on this paper