Automated Muscle and Fat Segmentation in Computed Tomography for Comprehensive Body Composition Analysis

Body composition assessment using CT images can potentially be used for a number of clinical applications, including the prognostication of cardiovascular outcomes, evaluation of metabolic health, monitoring of disease progression, assessment of nutritional status, prediction of treatment response in oncology, and risk stratification for surgical and critical care outcomes. While multiple groups have developed in-house segmentation tools for this analysis, there are very limited publicly available tools that could be consistently used across different applications. To mitigate this gap, we present a publicly accessible, end-to-end segmentation and feature calculation model specifically for CT body composition analysis. Our model performs segmentation of skeletal muscle, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) across the chest, abdomen, and pelvis area in axial CT images. It also provides various body composition metrics, including muscle density, visceral-to-subcutaneous fat (VAT/SAT) ratio, muscle area/volume, and skeletal muscle index (SMI), supporting both 2D and 3D assessments. The model is shared for public use. To evaluate the model, the segmentation was applied to both internal and external datasets, with body composition metrics analyzed across different age, sex, and race groups. The model achieved high dice coefficients on both internal and external datasets, exceeding 89% for skeletal muscle, SAT, and VAT segmentation. The model outperforms the benchmark by 2.40% on skeletal muscle and 10.26% on SAT compared to the manual annotations given by the publicly available dataset. Body composition metrics show mean relative absolute errors (MRAEs) under 10% for all measures. Furthermore, the model provided muscular fat segmentation with a Dice coefficient of 56.27%, which can be utilized for additional analyses as needed.
View on arXiv@article{chen2025_2502.09779, title={ Automated Muscle and Fat Segmentation in Computed Tomography for Comprehensive Body Composition Analysis }, author={ Yaqian Chen and Hanxue Gu and Yuwen Chen and Jicheng Yang and Haoyu Dong and Joseph Y. Cao and Adrian Camarena and Christopher Mantyh and Roy Colglazier and Maciej A. Mazurowski }, journal={arXiv preprint arXiv:2502.09779}, year={ 2025 } }