ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.09205
81
2

Counterfactual Explanations as Plans

13 February 2025
Vaishak Belle
    LRM
ArXivPDFHTML
Abstract

There has been considerable recent interest in explainability in AI, especially with black-box machine learning models. As correctly observed by the planning community, when the application at hand is not a single-shot decision or prediction, but a sequence of actions that depend on observations, a richer notion of explanations are desirable.In this paper, we look to provide a formal account of ``counterfactual explanations," based in terms of action sequences. We then show that this naturally leads to an account of model reconciliation, which might take the form of the user correcting the agent's model, or suggesting actions to the agent's plan. For this, we will need to articulate what is true versus what is known, and we appeal to a modal fragment of the situation calculus to formalise these intuitions. We consider various settings: the agent knowing partial truths, weakened truths and having false beliefs, and show that our definitions easily generalize to these different settings.

View on arXiv
@article{belle2025_2502.09205,
  title={ Counterfactual Explanations as Plans },
  author={ Vaishak Belle },
  journal={arXiv preprint arXiv:2502.09205},
  year={ 2025 }
}
Comments on this paper