ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.04478
156
0

OneTrack-M: A multitask approach to transformer-based MOT models

6 February 2025
Luiz C. S. de Araujo
Carlos M. S. Figueiredo
    VOT
ArXiv (abs)PDFHTML
Main:11 Pages
11 Figures
Bibliography:2 Pages
6 Tables
Abstract

Multi-Object Tracking (MOT) is a critical problem in computer vision, essential for understanding how objects move and interact in videos. This field faces significant challenges such as occlusions and complex environmental dynamics, impacting model accuracy and efficiency. While traditional approaches have relied on Convolutional Neural Networks (CNNs), introducing transformers has brought substantial advancements. This work introduces OneTrack-M, a transformer-based MOT model designed to enhance tracking computational efficiency and accuracy. Our approach simplifies the typical transformer-based architecture by eliminating the need for a decoder model for object detection and tracking. Instead, the encoder alone serves as the backbone for temporal data interpretation, significantly reducing processing time and increasing inference speed. Additionally, we employ innovative data pre-processing and multitask training techniques to address occlusion and diverse objective challenges within a single set of weights. Experimental results demonstrate that OneTrack-M achieves at least 25% faster inference times compared to state-of-the-art models in the literature while maintaining or improving tracking accuracy metrics. These improvements highlight the potential of the proposed solution for real-time applications such as autonomous vehicles, surveillance systems, and robotics, where rapid responses are crucial for system effectiveness.

View on arXiv
Comments on this paper