ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.02958
133
7
v1v2v3 (latest)

Position: Editing Large Language Models Poses Serious Safety Risks

5 February 2025
Paul Youssef
Zhixue Zhao
Daniel Braun
Jorg Schlotterer
C. Seifert
    KELM
ArXiv (abs)PDFHTML
Main:9 Pages
1 Figures
Bibliography:5 Pages
4 Tables
Appendix:1 Pages
Abstract

Large Language Models (LLMs) contain large amounts of facts about the world. These facts can become outdated over time, which has led to the development of knowledge editing methods (KEs) that can change specific facts in LLMs with limited side effects. This position paper argues that editing LLMs poses serious safety risks that have been largely overlooked. First, we note the fact that KEs are widely available, computationally inexpensive, highly performant, and stealthy makes them an attractive tool for malicious actors. Second, we discuss malicious use cases of KEs, showing how KEs can be easily adapted for a variety of malicious purposes. Third, we highlight vulnerabilities in the AI ecosystem that allow unrestricted uploading and downloading of updated models without verification. Fourth, we argue that a lack of social and institutional awareness exacerbates this risk, and discuss the implications for different stakeholders. We call on the community to (i) research tamper-resistant models and countermeasures against malicious model editing, and (ii) actively engage in securing the AI ecosystem.

View on arXiv
Comments on this paper