ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.18617
100
2

DarkMind: Latent Chain-of-Thought Backdoor in Customized LLMs

24 January 2025
Zhen Guo
R. Tourani
    AAMLSILMLRM
ArXiv (abs)PDFHTML
Abstract

With the growing demand for personalized AI solutions, customized LLMs have become a preferred choice for businesses and individuals, driving the deployment of millions of AI agents across various platforms, e.g., GPT Store hosts over 3 million customized GPTs. Their popularity is partly driven by advanced reasoning capabilities, such as Chain-of-Thought, which enhance their ability to tackle complex tasks. However, their rapid proliferation introduces new vulnerabilities, particularly in reasoning processes that remain largely unexplored. We introduce DarkMind, a novel backdoor attack that exploits the reasoning capabilities of customized LLMs. Designed to remain latent, DarkMind activates within the reasoning chain to covertly alter the final outcome. Unlike existing attacks, it operates without injecting triggers into user queries, making it a more potent threat. We evaluate DarkMind across eight datasets covering arithmetic, commonsense, and symbolic reasoning domains, using five state-of-the-art LLMs with five distinct trigger implementations. Our results demonstrate DarkMind effectiveness across all scenarios, underscoring its impact. Finally, we explore potential defense mechanisms to mitigate its risks, emphasizing the need for stronger security measures.

View on arXiv
Comments on this paper