ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.18298
40
0

Update Estimation and Scheduling for Over-the-Air Federated Learning with Energy Harvesting Devices

30 January 2025
Furkan Bagci
Busra Tegin
M. Kazemi
T. Duman
ArXivPDFHTML
Abstract

We study over-the-air (OTA) federated learning (FL) for energy harvesting devices with heterogeneous data distribution over wireless fading multiple access channel (MAC). To address the impact of low energy arrivals and data heterogeneity on global learning, we propose user scheduling strategies. Specifically, we develop two approaches: 1) entropy-based scheduling for known data distributions and 2) least-squares-based user representation estimation for scheduling with unknown data distributions at the parameter server. Both methods aim to select diverse users, mitigating bias and enhancing convergence. Numerical and analytical results demonstrate improved learning performance by reducing redundancy and conserving energy.

View on arXiv
Comments on this paper