93
1

Dual Invariance Self-training for Reliable Semi-supervised Surgical Phase Recognition

Main:4 Pages
3 Figures
Bibliography:1 Pages
3 Tables
Abstract

Accurate surgical phase recognition is crucial for advancing computer-assisted interventions, yet the scarcity of labeled data hinders training reliable deep learning models. Semi-supervised learning (SSL), particularly with pseudo-labeling, shows promise over fully supervised methods but often lacks reliable pseudo-label assessment mechanisms. To address this gap, we propose a novel SSL framework, Dual Invariance Self-Training (DIST), that incorporates both Temporal and Transformation Invariance to enhance surgical phase recognition. Our two-step self-training process dynamically selects reliable pseudo-labels, ensuring robust pseudo-supervision. Our approach mitigates the risk of noisy pseudo-labels, steering decision boundaries toward true data distribution and improving generalization to unseen data. Evaluations on Cataract and Cholec80 datasets show our method outperforms state-of-the-art SSL approaches, consistently surpassing both supervised and SSL baselines across various network architectures.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.