ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.16507
32
0

Characterizing Network Structure of Anti-Trans Actors on TikTok

27 January 2025
Maxyn Leitner
Rebecca Dorn
Fred Morstatter
Kristina Lerman
ArXivPDFHTML
Abstract

The recent proliferation of short form video social media sites such as TikTok has been effectively utilized for increased visibility, communication, and community connection amongst trans/nonbinary creators online. However, these same platforms have also been exploited by right-wing actors targeting trans/nonbinary people, enabling such anti-trans actors to efficiently spread hate speech and propaganda. Given these divergent groups, what are the differences in network structure between anti-trans and pro-trans communities on TikTok, and to what extent do they amplify the effects of anti-trans content? In this paper, we collect a sample of TikTok videos containing pro and anti-trans content, and develop a taxonomy of trans related sentiment to enable the classification of content on TikTok, and ultimately analyze the reply network structures of pro-trans and anti-trans communities. In order to accomplish this, we worked with hired expert data annotators from the trans/nonbinary community in order to generate a sample of highly accurately labeled data. From this subset, we utilized a novel classification pipeline leveraging Retrieval-Augmented Generation (RAG) with annotated examples and taxonomy definitions to classify content into pro-trans, anti-trans, or neutral categories. We find that incorporating our taxonomy and its logics into our classification engine results in improved ability to differentiate trans related content, and that Results from network analysis indicate many interactions between posters of pro-trans and anti-trans content exist, further demonstrating targeting of trans individuals, and demonstrating the need for better content moderation tools

View on arXiv
Comments on this paper