ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.16178
48
1

SWIFT: Mapping Sub-series with Wavelet Decomposition Improves Time Series Forecasting

28 January 2025
Wenxuan Xie
Fanpu Cao
    AI4TS
ArXivPDFHTML
Abstract

In recent work on time-series prediction, Transformers and even large language models have garnered significant attention due to their strong capabilities in sequence modeling. However, in practical deployments, time-series prediction often requires operation in resource-constrained environments, such as edge devices, which are unable to handle the computational overhead of large models. To address such scenarios, some lightweight models have been proposed, but they exhibit poor performance on non-stationary sequences. In this paper, we propose SWIFT\textit{SWIFT}SWIFT, a lightweight model that is not only powerful, but also efficient in deployment and inference for Long-term Time Series Forecasting (LTSF). Our model is based on three key points: (i) Utilizing wavelet transform to perform lossless downsampling of time series. (ii) Achieving cross-band information fusion with a learnable filter. (iii) Using only one shared linear layer or one shallow MLP for sub-series' mapping. We conduct comprehensive experiments, and the results show that SWIFT\textit{SWIFT}SWIFT achieves state-of-the-art (SOTA) performance on multiple datasets, offering a promising method for edge computing and deployment in this task. Moreover, it is noteworthy that the number of parameters in SWIFT-Linear\textit{SWIFT-Linear}SWIFT-Linear is only 25\% of what it would be with a single-layer linear model for time-domain prediction. Our code is available atthis https URL.

View on arXiv
Comments on this paper