ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.15876
36
0

Optimizing Sentence Embedding with Pseudo-Labeling and Model Ensembles: A Hierarchical Framework for Enhanced NLP Tasks

28 January 2025
Ziwei Liu
Qi Zhang
Lifu Gao
ArXivPDFHTML
Abstract

Sentence embedding tasks are important in natural language processing (NLP), but improving their performance while keeping them reliable is still hard. This paper presents a framework that combines pseudo-label generation and model ensemble techniques to improve sentence embeddings. We use external data from SimpleWiki, Wikipedia, and BookCorpus to make sure the training data is consistent. The framework includes a hierarchical model with an encoding layer, refinement layer, and ensemble prediction layer, using ALBERT-xxlarge, RoBERTa-large, and DeBERTa-large models. Cross-attention layers combine external context, and data augmentation techniques like synonym replacement and back-translation increase data variety. Experimental results show large improvements in accuracy and F1-score compared to basic models, and studies confirm that cross-attention and data augmentation make a difference. This work presents an effective way to improve sentence embedding tasks and lays the groundwork for future NLP research.

View on arXiv
Comments on this paper