ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.15870
46
0

D-PLS: Decoupled Semantic Segmentation for 4D-Panoptic-LiDAR-Segmentation

28 January 2025
Maik Steinhauser
Laurenz Reichardt
Nikolas Ebert
Oliver Wasenmüller
ArXivPDFHTML
Abstract

This paper introduces a novel approach to 4D Panoptic LiDAR Segmentation that decouples semantic and instance segmentation, leveraging single-scan semantic predictions as prior information for instance segmentation. Our method D-PLS first performs single-scan semantic segmentation and aggregates the results over time, using them to guide instance segmentation. The modular design of D-PLS allows for seamless integration on top of any semantic segmentation architecture, without requiring architectural changes or retraining. We evaluate our approach on the SemanticKITTI dataset, where it demonstrates significant improvements over the baseline in both classification and association tasks, as measured by the LiDAR Segmentation and Tracking Quality (LSTQ) metric. Furthermore, we show that our decoupled architecture not only enhances instance prediction but also surpasses the baseline due to advancements in single-scan semantic segmentation.

View on arXiv
Comments on this paper