ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.15365
55
3

A Transfer Learning Framework for Anomaly Detection in Multivariate IoT Traffic Data

28 January 2025
Mahshid Rezakhani
Tolunay Seyfi
Fatemeh Afghah
    MU
ArXivPDFHTML
Abstract

In recent years, rapid technological advancements and expanded Internet access have led to a significant rise in anomalies within network traffic and time-series data. Prompt detection of these irregularities is crucial for ensuring service quality, preventing financial losses, and maintaining robust security standards. While machine learning algorithms have shown promise in achieving high accuracy for anomaly detection, their performance is often constrained by the specific conditions of their training data. A persistent challenge in this domain is the scarcity of labeled data for anomaly detection in time-series datasets. This limitation hampers the training efficacy of both traditional machine learning and advanced deep learning models. To address this, unsupervised transfer learning emerges as a viable solution, leveraging unlabeled data from a source domain to identify anomalies in an unlabeled target domain. However, many existing approaches still depend on a small amount of labeled data from the target domain. To overcome these constraints, we propose a transfer learning-based model for anomaly detection in multivariate time-series datasets. Unlike conventional methods, our approach does not require labeled data in either the source or target domains. Empirical evaluations on novel intrusion detection datasets demonstrate that our model outperforms existing techniques in accurately identifying anomalies within an entirely unlabeled target domain.

View on arXiv
Comments on this paper