ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.15304
34
0

Music Generation using Human-In-The-Loop Reinforcement Learning

28 January 2025
Aju Ani Justus
ArXivPDFHTML
Abstract

This paper presents an approach that combines Human-In-The-Loop Reinforcement Learning (HITL RL) with principles derived from music theory to facilitate real-time generation of musical compositions. HITL RL, previously employed in diverse applications such as modelling humanoid robot mechanics and enhancing language models, harnesses human feedback to refine the training process. In this study, we develop a HILT RL framework that can leverage the constraints and principles in music theory. In particular, we propose an episodic tabular Q-learning algorithm with an epsilon-greedy exploration policy. The system generates musical tracks (compositions), continuously enhancing its quality through iterative human-in-the-loop feedback. The reward function for this process is the subjective musical taste of the user.

View on arXiv
Comments on this paper