ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.12427
31
0

SafePowerGraph-HIL: Real-Time HIL Validation of Heterogeneous GNNs for Bridging Sim-to-Real Gap in Power Grids

21 January 2025
Aoxiang Ma
Salah Ghamizi
Jun Cao
Pedro Rodriguez
ArXivPDFHTML
Abstract

As machine learning (ML) techniques gain prominence in power system research, validating these methods' effectiveness under real-world conditions requires real-time hardware-in-the-loop (HIL) simulations. HIL simulation platforms enable the integration of computational models with physical devices, allowing rigorous testing across diverse scenarios critical to system resilience and reliability. In this study, we develop a SafePowerGraph-HIL framework that utilizes HIL simulations on the IEEE 9-bus system, modeled in Hypersim, to generate high-fidelity data, which is then transmitted in real-time via SCADA to an AWS cloud database before being input into a Heterogeneous Graph Neural Network (HGNN) model designed for power system state estimation and dynamic analysis. By leveraging Hypersim's capabilities, we simulate complex grid interactions, providing a robust dataset that captures critical parameters for HGNN training. The trained HGNN is subsequently validated using newly generated data under varied system conditions, demonstrating accuracy and robustness in predicting power system states. The results underscore the potential of integrating HIL with advanced neural network architectures to enhance the real-time operational capabilities of power systems. This approach represents a significant advancement toward the development of intelligent, adaptive control strategies that support the robustness and resilience of evolving power grids.

View on arXiv
Comments on this paper