ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.10560
48
0

Picachv: Formally Verified Data Use Policy Enforcement for Secure Data Analytics

17 January 2025
Haobin Hiroki Chen
Hongbo Chen
Mingshen Sun
Chenghong Wang
Xiaofeng Wang
ArXivPDFHTML
Abstract

Ensuring the proper use of sensitive data in analytics under complex privacy policies is an increasingly critical challenge. Many existing approaches lack portability, verifiability, and scalability across diverse data processing frameworks. We introduce Picachv, a novel security monitor that automatically enforces data use policies. It works on relational algebra as an abstraction for program semantics, enabling policy enforcement on query plans generated by programs during execution. This approach simplifies analysis across diverse analytical operations and supports various front-end query languages. By formalizing both data use policies and relational algebra semantics in Coq, we prove that Picachv correctly enforces policies. Picachv also leverages Trusted Execution Environments (TEEs) to enhance trust in runtime, providing provable policy compliance to stakeholders that the analytical tasks comply with their data use policies. We integrated Picachv into Polars, a state-of-the-art data analytics framework, and evaluate its performance using the TPC-H benchmark. We also apply our approach to real-world use cases. Our work demonstrates the practical application of formal methods in securing data analytics, addressing key challenges.

View on arXiv
Comments on this paper