ArithmAttack: Evaluating Robustness of LLMs to Noisy Context in Math Problem Solving
- AAML

Main:4 Pages
3 Figures
Bibliography:2 Pages
3 Tables
Abstract
While Large Language Models (LLMs) have shown impressive capabilities in math problem-solving tasks, their robustness to noisy inputs is not well-studied. In this work, we propose ArithmAttack to examine how robust the LLMs are when they encounter noisy prompts that contain extra noise in the form of punctuation marks. While being easy to implement, ArithmAttack does not cause any information loss since words are not added or deleted from the context. We evaluate the robustness of seven LLMs, including LLama3, Mistral, and Mathstral, on noisy GSM8K and MultiArith datasets. Our experiments suggest that all the studied models show vulnerability to such noise, with more noise leading to poorer performances.
View on arXiv@article{abedin2025_2501.08203, title={ ArithmAttack: Evaluating Robustness of LLMs to Noisy Context in Math Problem Solving }, author={ Zain Ul Abedin and Shahzeb Qamar and Lucie Flek and Akbar Karimi }, journal={arXiv preprint arXiv:2501.08203}, year={ 2025 } }
Comments on this paper