ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.07183
41
0

Kriging and Gaussian Process Interpolation for Georeferenced Data Augmentation

13 January 2025
Frédérick Fabre Ferber
Dominique Gay
Jean-Christophe Soulié
Jean Diatta
Odalric-Ambrym Maillard
ArXivPDFHTML
Abstract

Data augmentation is a crucial step in the development of robust supervised learning models, especially when dealing with limited datasets. This study explores interpolation techniques for the augmentation of geo-referenced data, with the aim of predicting the presence of Commelina benghalensis L. in sugarcane plots in La R{é}union. Given the spatial nature of the data and the high cost of data collection, we evaluated two interpolation approaches: Gaussian processes (GPs) with different kernels and kriging with various variograms. The objectives of this work are threefold: (i) to identify which interpolation methods offer the best predictive performance for various regression algorithms, (ii) to analyze the evolution of performance as a function of the number of observations added, and (iii) to assess the spatial consistency of augmented datasets. The results show that GP-based methods, in particular with combined kernels (GP-COMB), significantly improve the performance of regression algorithms while requiring less additional data. Although kriging shows slightly lower performance, it is distinguished by a more homogeneous spatial coverage, a potential advantage in certain contexts.

View on arXiv
Comments on this paper