ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.07110
48
17

Dynamic Multimodal Fusion via Meta-Learning Towards Micro-Video Recommendation

13 January 2025
Han Liu
Yinwei Wei
Fan Liu
Luu Anh Tuan
Liqiang Nie
Tat-Seng Chua
ArXivPDFHTML
Abstract

Multimodal information (e.g., visual, acoustic, and textual) has been widely used to enhance representation learning for micro-video recommendation. For integrating multimodal information into a joint representation of micro-video, multimodal fusion plays a vital role in the existing micro-video recommendation approaches. However, the static multimodal fusion used in previous studies is insufficient to model the various relationships among multimodal information of different micro-videos. In this paper, we develop a novel meta-learning-based multimodal fusion framework called Meta Multimodal Fusion (MetaMMF), which dynamically assigns parameters to the multimodal fusion function for each micro-video during its representation learning. Specifically, MetaMMF regards the multimodal fusion of each micro-video as an independent task. Based on the meta information extracted from the multimodal features of the input task, MetaMMF parameterizes a neural network as the item-specific fusion function via a meta learner. We perform extensive experiments on three benchmark datasets, demonstrating the significant improvements over several state-of-the-art multimodal recommendation models, like MMGCN, LATTICE, and InvRL. Furthermore, we lighten our model by adopting canonical polyadic decomposition to improve the training efficiency, and validate its effectiveness through experimental results. Codes are available atthis https URL.

View on arXiv
Comments on this paper