ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.03443
26
10

Optimization Learning

8 January 2025
Pascal Van Hentenryck
ArXivPDFHTML
Abstract

This article introduces the concept of optimization learning, a methodology to design optimization proxies that learn the input/output mapping of parametric optimization problems. These optimization proxies are trustworthy by design: they compute feasible solutions to the underlying optimization problems, provide quality guarantees on the returned solutions, and scale to large instances. Optimization proxies are differentiable programs that combine traditional deep learning technology with repair or completion layers to produce feasible solutions. The article shows that optimization proxies can be trained end-to-end in a self-supervised way. It presents methodologies to provide performance guarantees and to scale optimization proxies to large-scale optimization problems. The potential of optimization proxies is highlighted through applications in power systems and, in particular, real-time risk assessment and security-constrained optimal power flow.

View on arXiv
Comments on this paper