ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.02683
97
1
v1v2 (latest)

From Superficial Patterns to Semantic Understanding: Fine-Tuning Language Models on Contrast Sets

5 January 2025
Daniel Petrov
ArXiv (abs)PDFHTML
Main:3 Pages
2 Figures
Bibliography:1 Pages
5 Tables
Abstract

Large scale pretrained language models have demonstrated high performance on standard datasets for natural language inference (NLI) tasks. Unfortunately, these evaluations can be misleading, as although the models can perform well on in-distribution data, they perform poorly on out-of-distribution test sets, such as contrast sets. Contrast sets consist of perturbed instances of data that have very minor, but meaningful, changes to the input that alter the gold label, revealing how models can learn superficial patterns in the training data rather than learning more sophisticated language nuances. As an example, the ELECTRA-small language model achieves nearly 90% accuracy on an SNLI dataset but drops to 75% when tested on an out-of-distribution contrast set. The research performed in this study explores how a language models' robustness can be improved by exposing it to small amounts of more complex contrast sets during training to help it better learn language patterns. With this approach, the model regains performance and achieves nearly 90% accuracy on contrast sets, highlighting the importance of diverse and challenging training data.

View on arXiv
Comments on this paper