ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.02024
72
0

Model Checking in Medical Imaging for Tumor Detection and Segmentation

8 January 2025
Elhoucine Elfatimi
Lahcen El fatimi
ArXivPDFHTML
Abstract

Recent advancements in model checking have demonstrated significant potential across diverse applications, particularly in signal and image analysis. Medical imaging stands out as a critical domain where model checking can be effectively applied to design and evaluate robust frameworks. These frameworks facilitate automatic and semi-automatic delineation of regions of interest within images, aiding in accurate segmentation. This paper provides a comprehensive analysis of recent works leveraging spatial logic to develop operators and tools for identifying regions of interest, including tumorous and non-tumorous areas. Additionally, we examine the challenges inherent to spatial model-checking techniques, such as variability in ground truth data and the need for streamlined procedures suitable for routine clinical practice.

View on arXiv
Comments on this paper