ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.00208
48
2

An Empirical Evaluation of Large Language Models on Consumer Health Questions

3 January 2025
Moaiz Abrar
Y. Sermet
Ibrahim Demir
    AI4MH
    LM&MA
    ELM
ArXivPDFHTML
Abstract

This study evaluates the performance of several Large Language Models (LLMs) on MedRedQA, a dataset of consumer-based medical questions and answers by verified experts extracted from the AskDocs subreddit. While LLMs have shown proficiency in clinical question answering (QA) benchmarks, their effectiveness on real-world, consumer-based, medical questions remains less understood. MedRedQA presents unique challenges, such as informal language and the need for precise responses suited to non-specialist queries. To assess model performance, responses were generated using five LLMs: GPT-4o mini, Llama 3.1: 70B, Mistral-123B, Mistral-7B, and Gemini-Flash. A cross-evaluation method was used, where each model evaluated its responses as well as those of others to minimize bias. The results indicated that GPT-4o mini achieved the highest alignment with expert responses according to four out of the five models' judges, while Mistral-7B scored lowest according to three out of five models' judges. This study highlights the potential and limitations of current LLMs for consumer health medical question answering, indicating avenues for further development.

View on arXiv
Comments on this paper