ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.21071
27
2

Investigating layer-selective transfer learning of QAOA parameters for Max-Cut problem

31 December 2024
Francesco Aldo Venturelli
Sreetama Das
Filippo Caruso
ArXivPDFHTML
Abstract

Quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm (VQA) ideal for noisy intermediate-scale quantum (NISQ) processors, and is highly successful for solving combinatorial optimization problems (COPs). It has been observed that the optimal variational parameters obtained from one instance of a COP can be transferred to another instance, producing sufficiently satisfactory solutions for the latter. In this context, a suitable method for further improving the solution is to fine-tune a subset of the transferred parameters. We numerically explore the role of optimizing individual QAOA layers in improving the approximate solution of the Max-Cut problem after parameter transfer. We also investigate the trade-off between a good approximation and the required optimization time when optimizing transferred QAOA parameters. These studies show that optimizing a subset of layers can be more effective at a lower time-cost compared to optimizing all layers.

View on arXiv
Comments on this paper