81
1

AfriHG: News headline generation for African Languages

Abstract

This paper introduces AfriHG -- a news headline generation dataset created by combining from XLSum and MasakhaNEWS datasets focusing on 16 languages widely spoken by Africa. We experimented with two seq2eq models (mT5-base and AfriTeVa V2), and Aya-101 LLM. Our results show that Africa-centric seq2seq models such as AfriTeVa V2 outperform the massively multilingual mT5-base model. Finally, we show that the performance of fine-tuning AfriTeVa V2 with 313M parameters is competitive to prompting Aya-101 LLM with more than 13B parameters.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.